skip to main content


Search for: All records

Creators/Authors contains: "Simon, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Purpose: Paracrine activation of pro-fibrotic hedgehog (HH) signaling in pancreatic ductal adenocarcinoma (PDAC) results in stromal amplification that compromises tumor drug delivery, efficacy, and patient survival. Interdiction of HH-mediated tumor-stroma crosstalk with smoothened (SMO) inhibitors (SHHi) ‘primes’ PDAC patient-derived xenograft (PDX) tumors for increased drug delivery by transiently increasing vascular patency/permeability, and thereby macromolecule delivery. However, patient tumor isolates vary in their responsiveness, and responders show co-induction of epithelial-mesenchymal transition (EMT). We aimed to identify the signal derangements responsible for EMT induction and reverse them, and devise approaches to stratify SHHi-responsive tumors non-invasively based on clinically-quantifiable parameters. Experimental design: Animals underwent diffusion-weighted magnetic resonance (DW-MR) imaging for measurement of intra-tumor diffusivity. In parallel, tissue-level deposition of nanoparticle probes was quantified as a marker of vascular permeability/perfusion. Transcriptomic and bioinformatic analysis was employed to investigate SHHi-induced gene reprogramming and identify key ‘nodes’ responsible for EMT induction. Results: multiple patient tumor isolates responded to short-term SHH inhibitor exposure with increased vascular patency and permeability, with proportionate increases in tumor diffusivity. Non-responding PDXs did not. SHHi-treated tumors showed elevated FGF drive and distinctly higher nuclear localization of fibroblast growth factor receptor (FGFR1) in EMT-polarized tumor cells. Pan-FGFR inhibitor NVP-BGJ398 (Infigratinib) reversed the SHHi-induced EMT marker expression and nuclear FGFR1 accumulation without compromising the enhanced permeability effect. Conclusion: This dual-hit strategy of SMO and FGFR inhibition provides a clinically-translatable approach to compromise the profound impermeability of PDAC tumors. Furthermore, clinical deployment of DW-MR imaging could fulfill the essential clinical-translational requirement for patient stratification.

     
    more » « less
    Free, publicly-accessible full text available January 25, 2025
  3. Free, publicly-accessible full text available July 1, 2024
  4. Rock-physics models for carbonate reservoirs assume that the mineral elastic moduli are known variables. A review of publications reveals a range of values for calcite that are out of date and misleading. We present a robust compilation for future investigations. We subsequently discuss the application of calcite elastic moduli for rock-physics modeling and interpretation of wireline data through a case study data set from an offshore Canada carbonate reservoir. The data set exhibits an offset between the zero-porosity intercept and the calcite elastic moduli values. Our experience indicates that this phenomenon is present in many wireline data sets from carbonate reservoirs around the world. We demonstrate that the data can be reconciled to the mineral elastic moduli through the interpretation of microcracks in the formation (defined by a crack density of 0.06). Understanding the microcrack effect in relatively low-porosity formations is important for the correct calibration of pore microstructure parameters and for fluid-substitution calculations. Results in the case study data set show a relatively high sensitivity to changes in fluid saturation. The sensitivity can be reduced through the use of effective mineral elastic moduli that are derived from the data. We justify the effective mineral elastic moduli as a representation of the mineral moduli plus microcracks. The effective mineral elastic moduli are proposed as a relatively simple method to constrain the fluid substitution calculations in low-porosity formations where microcracks are present. 
    more » « less
  5. This paper investigates when one can efficiently recover an approximate Nash Equilibrium (NE) in offline congestion games. The existing dataset coverage assumption in offline general-sum games inevitably incurs a dependency on the number of actions, which can be exponentially large in congestion games. We consider three different types of feedback with decreasing revealed information. Starting from the facility-level (a.k.a., semi-bandit) feedback, we propose a novel one-unit deviation coverage condition and show a pessimism-type algorithm that can recover an approximate NE. For the agent-level (a.k.a., bandit) feedback setting, interestingly, we show the one-unit deviation coverage condition is not sufficient. On the other hand, we convert the game to multi-agent linear bandits and show that with a generalized data coverage assumption in offline linear bandits, we can efficiently recover the approximate NE. Lastly, we consider a novel type of feedback, the game-level feedback where only the total reward from all agents is revealed. Again, we show the coverage assumption for the agent-level feedback setting is insufficient in the game-level feedback setting, and with a stronger version of the data coverage assumption for linear bandits, we can recover an approximate NE. Together, our results constitute the first study of offline congestion games and imply formal separations between different types of feedback. 
    more » « less
  6. In this paper, we investigate Nash-regret minimization in congestion games, a class of games with benign theoretical structure and broad real-world applications. We first propose a centralized algorithm based on the optimism in the face of uncertainty principle for congestion games with (semi-)bandit feedback, and obtain finite-sample guarantees. Then we propose a decentralized algorithm via a novel combination of the Frank-Wolfe method and G-optimal design. By exploiting the structure of the congestion game, we show the sample complexity of both algorithms depends only polynomially on the number of players and the number of facilities, but not the size of the action set, which can be exponentially large in terms of the number of facilities. We further define a new problem class, Markov congestion games, which allows us to model the non-stationarity in congestion games. We propose a centralized algorithm for Markov congestion games, whose sample complexity again has only polynomial dependence on all relevant problem parameters, but not the size of the action set. 
    more » « less
  7. We study algorithms using randomized value functions for exploration in reinforcement learning. This type of algorithms enjoys appealing empirical performance. We show that when we use 1) a single random seed in each episode, and 2) a Bernstein-type magnitude of noise, we obtain a worst-case O~(H√SAT) regret bound for episodic time-inhomogeneous Markov Decision Process where S is the size of state space, A is the size of action space, H is the planning horizon and T is the number of interactions. This bound polynomially improves all existing bounds for algorithms based on randomized value functions, and for the first time, matches the Ω(H√SAT) lower bound up to logarithmic factors. Our result highlights that randomized exploration can be near-optimal, which was previously achieved only by optimistic algorithms. To achieve the desired result, we develop 1) a new clipping operation to ensure both the probability of being optimistic and the probability of being pessimistic are lower bounded by a constant, and 2) a new recursive formula for the absolute value of estimation errors to analyze the regret. 
    more » « less
  8. Sulfoximines are emerging moieties for medicinal and biological chemistry, due in part to their efficacy in selective inhibition of amide-forming enzymes such as γ-glutamylcysteine synthetase. While small-molecule sulfoximines such as methionine sulfoximine (MSO) and its derivatives are well studied, structures with methionine sulfoximine residues within complex polypeptides have been generally inaccessible. This paper describes a straightforward means of late-stage one-step oxidation of methionine residues within polypeptides to afford NH-sulfoximines. We also present chemoselective subsequent elaboration, most notably by copper( ii )-mediated N–H cross-coupling at methionine sulfoximine residues with arylboronic acid reagents. This development serves as a strategy to incorporate diverse sulfoximine structures within natural polypeptides, and also identifies the methionine sulfoximine residue as a new site for bioorthogonal, chemoselective bioconjugation. 
    more » « less